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A NEW PROOF OF THE
MAUREY-PISIER THEOREM

BY
V.D.MILMAN AND M. SHARIR

ABSTRACT

In this paper we give a new proof of the Maurey-Pisier theorem about the finite
representation of [, and I in any infinite dimensional Banach space E.

1. Introduction

The key theorem in the now fastly growing theory of type and cotype of
Banach spaces is the theorem of Maurey and Pisier [4], stating that if pg is the
supremum of all types of an infinite dimensional Banach space E, and gg is the
infinum of all cotypes, then [, and [, are both finitely representable in E. This
result establishes a link between probabilistic properties and geometric proper-
ties of Banach spaces, and plays an important role in the modern study of the
geometry of Banach spaces.

However, the original proof of the theorem given in [4] is rather complicated.
We shall present in this paper a shorter, and, to our belief, more natural proof of
this theorem.

We assume that the reader is familiar with the basic theory of type and cotype.
The relevant notations will be introduced in the next section, but let us first
review briefly our proof.

We start as do Maurey and Pisier in their proof [4] with a finite sequence in E,
almost attaining equality in the inequality in the definition of type (or cotype).
This sequence is manipulated, using some lemmas taken from [4] (lemmas
2.1-2.3 in our paper), but then applying a new geometry-oriented argument, to
obtain from it a new sequence which “behaves” better, in the sense that it
satisfies formula (2) (resp. (4)) below in the case of cotype (resp. type). Further

Received October 29, 1978 and in revised form May 10, 1979

73



74 V. D. MILMAN AND M. SHARIR Israel J. Math.

manipulation of this sequence, using the combinatorial theorems of Brunel and
Sucheston [1] about unconditional and spreading-invariant subsequences in
Banach spaces, and then the deep theorem of Krivine [3] about finite representa-
tion of /, spaces in Banach spaces, completes the proof by producing yet another
sequence spanning a finite /, subspace of E as desired. This final construction is
relatively simple in the case of cotype, but presents some technical difficulties in
the case of type, as the required inequalities all go in the “wrong” direction.
These difficulties are resolved in the final lemma 2.9,

The ideas in this proof have already been used by the authors in 5] to prove a
similar theorem for somewhat different notions of type and cotype.

2. Proof of the Maurey-Pisier theorem

Let us first introduce several definitions related to the notions of type and
cotype.

Recall that a Banach space E is said to be of type 1 = p =2 (resp. of cotype
q = 2) if there exists a constant C >0 such that for each finite sequence
Xy, x, € E, we have

|

(resp. <2 | x: [l")wqé C(j ”2 x,-s.-(t)”th>”q)

where ¢,(t) are the Rademacher variables. The smallest such C is denoted by C,
(resp. C,) and is called the p-type (resp. q-cotype) constant of E. By a result of
Kahane [2], all L?(E)-norms are equivalent on the linear span of elements of the

Z x.»ei(t)"pdt>”p§ C(,E::, I "p)”"

form ¢;(t)x;, j 2 1, x; € E, and so, up to changing the constant C, we may replace
the exponent in the integrals by any other exponent in [1, ).
Let

pe =sup{p : E is of type p},

qe = inf{q : E is of cotype q}.

(E need not be of type pg nor of cotype ge.)

Let the infinite dimensional Banach space E be given and fixed (unless
otherwise stated) henceforth. For each 1 = p =2 and each integer n, let ;,(n) be
the smallest positive constant ¢ such that, for every n elements x,, - - -, x,, of E,
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([|2 5eto]ar) "= u( S 1xlr) "

Similarly, for each 2= g and each integer n, we define ¢,(n) as the smallest
positive constant ¢ such that, for every n elements x,,---, x, of E,

<2 [l x: ||")”q§ ¢<J’ 2:‘1 x.-s,-(r)‘(th)”q

(see [4]). Evidently, the sequences {¢,(n)}az1, {¢,(n)}.= are increasing.
The following preliminary lemmas (2.1-2.3) are taken from Maurey and Pisier

[4], and are cited here for the sake of completeness. (The first lemma is by now
well-known and is used extensively in Banach-space theory.)

LeMMA 2.1. For each 1=p =2 and q =2, the sequences {¢,(n)}.=; and
{¢,(n)}nz1 are sub-multiplicative, i.e. for all integers n, k we have

(a) @q(nk) = @q(n)e,(k),
(b) Y (nk ) = g, (n)d, (k).

Lemma 2.2. (a) If N >1 is an integer, and q = r = 2 is defined by ¢,(N)=
N'""Y4 then E is of cotype s, for each s > q.

() If N >1 and p =r =2 is defined by ,(N)= N7V then E is of type s, for
each s <p.

CoroLLARY 2.3. For each integer n, pr =p =2=q = qs,

fa(n) 2 R0

dlp(n) = n(I/PE)_“/P).
LemMa 2.4. (a) If g = qs, then

. lo n)_1 1
lim ==———.
nee logn  q qe

(b) If p = pe, then
jm OB 06l0)_ L1
nee logn  pe p
Proor. We shall prove (a) only. It follows from the last corollary that

lim 28 ¢a(®) > 11
== logn g g
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On the other hand, let ¢ >0, r > g5, and let n be an integer. By the definition of
¢,(n) there exist y,, - -+, y, such that

2 Vi&i (t)“ th) "

(1- 8)%(,,)“
= (S 1wle)”
=noo ()"
= Gt f M > y.-e.-(t)" @)
ccrm( ][5 o] o)

(since E is of cotype r and by Kahane’s theorem {2] mentioned above). Hence,
yp y
1 -
< _ 1 M a1
<,z>q(n)_1 - C'n

and therefore

and since r > qg was arbitrary, we have proved the statement (a). The proof of
(b) is precisely the same.

Let us now recall the important theorems of Brunel and Sucheston, and of
Krivine, upon which our proof is based.

DeriNiTION.  Let ¢ >0. A sequence {y;}i=« in E is called e-invariant to
spreading, if for all s=k, 1=i,<i, - <ii=k, 1=j,<j,--- <j, =k, and
ay, -+, a, scalars of modulus =1, we have

2 &y,
m=1

We shall need the following version of the theorem of Brunel and Sucheston
{cf. [1]):

THEOREM 2.5. Let ¢ >0 and k be an integer. Then there exists N = N(k, ¢)
such that for every n = N and every sequence yi, - - -, y. in the unit ball of any

s

2 ®mY;,,

m=1

’§(1+£)




Vol. 33, 1979 THE MAUREY - PISIER THEOREM 77

Banach space, there exists a subsequence y,,---,y, which is e-invariant to
spreading.

The main deep result on which our proof is based, is the theorem of Krivine
[3], in the following finite-dimensional version.

THEOREM 2.6. Let 8,.] 0 and let {B,}.=: be a sequence of finite-dimensional
Banach spaces, such that, for each n, B, is spanned by a sequence y7, -+, y. of
norm-1 elements, which is 8.-invariant to spreading, and unconditional with
constant = C, where C does not depend on n. If, for every sequence n = t, — © of

then I, is block -finitely representable in {B,}.=1; i.e., for each ¢ >0 and each k,
there exists n, and k blocks of {y},---,yn which are (1+ ¢)-equivalent to the
standard basis of 1$°.

integers,

=1r

p=inf{r:lliirlt,.

Now we proceed to prove the Maurey—Pisier theorem.

THEOREM 2.7. (Maurey and Pisier) For each infinite-dimensional Banach
space E, I,_ and l,_ are both finitely representable in E.

Proor. (a) For cotype. Assume that 2<qg =c. (If gc =2, then there is
nothing to prove, for, by Dvoretzky’s theorem, [, is always finitely-representable
in E. The case ge = » is simpler, but we prefer to treat it in our general scheme.)
It suffices to prove the following assertion:

ASserRTION. There exists 0 <8 <1 such that for each £ >0 there exists a
constant y >0 such that for each integer m there exist m elements y, - - -, y,, of
E such that

(i) 1-86=|nll=s1,i=1,--,m;

(ii) (y1, - -, y=) is an unconditional basic sequence with constant =C (C
does not depend on m) and is ¢-invariant to spreading;

(i) | 2=y || =y - s"%, for all s =m.

Indeed, suppose that the assertion is true. In the case ge =  the inequality (iii)
implies ||=7"a; - y;|| = y max,s;=m|a;| and therefore span{y}jr, is (C-vy)
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isomorphic to [3. If g < o, then we are in a position to apply Krivine's theorem.
For each k, let yi -+, yi be k elements of E satisfying the assertion with
e« = 1/k, say. Define 2z} = yf/|yHll, j =1, -+, k. Then, for any q > g, we shall
have, for every s =k,

se= (3 zt)

<l

A

H -(t)l.th)uq

Z/ <J’_QC 51,

Thus, for any r, and each s =k,

(1/q)—(1/r)
s =g Z
cC =

< § (Vg

Now, for every sequence of integers k = s, — =, it follows that if r < gg then

“
=

~
Il
o

limsy"” z!
K =

and if r > qg, choosing g so that r > q > g will yield

lims"|| D, z¥fl = .
k =
Hence, I, is indeed finitely representable in E, by Theorem 2.6.

PROOF OF THE ASSERTION.  First assume gz <. Let k be given, and let us fix
2=r<gqg so that k""" =2 Put a =3(1-(r/qe)), and choose n large
enough, so that n* = N(k, ¢), as in Theorem 2.5. In the case gz = ® we choose r
so large that k' =2 and take a = 1/2. Then, by the definition of ¢,(n), there
exist x, -, x, € E such that

o (3

With no loss of generality, assume that max; [x;{|=1. Let 0< 8 <1 and put
w =1- 8. Define, for each j=z1 and i 21,

: r)lﬂ> 1- e)(p,(n)<

A ={i:w <|x|=w,

L=x/w,  fori€EA,
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If | A;| = n° we set A;o= A; and do nothing else with this set. If | A; | > n°, then,
by Theorem 2.5 and the choice of n, there exists a subset A} C A; of k elements

which are ¢-invariant to spreading. We choose a subset A;; C A} for which

(5 st

i€A;,
is maximal. If |A; — A;,| > n°, then there exist two other subsets A;,CA{JC
A; — A;; with the same properties. Continuing in this manner we obtain a

disjoint partition
Ai = Ai‘l U s U Ai""i U A,',o,

where | Ajo| = n° and for each 1=p =m;, A;, CA{), where A{} consists of k
elements which are ¢-invariants to spreading, and for each T CA),
>, kiei(t)

(13 seofa) ([I5zaofa)"

|App [ | T["e
We now split {1, -, n} into two parts. The “bad” part is A’= U, A, and the
“good” part, its complement, is A" = U; U <.z A, Let us show first that the

“bad” part can be essentially ignored in inequality (1). Indeed,

2 Ml =2l + 2 Ix
i=1 iIEA i€A

r

r

= 2 wU™ Al + EA (| x:
i iEA”

r

gl "a’+ 2 ||xi[.

-w iEA”

But a is so chosen that, by the property of ¢,(n) in Corollary 2.3, n* =
o(¢.(n)), and since 1= [ || =5, xie:(t)|'dt (because max| x;|| =1, and the sym-
metry properties of the Rademacher variables), we may assume that

n’ <g(1—g)'<p,(n)'-f gx.-s.-(t)"'dt.

1-w’

Thus, it follows from (1) that

(=ey oy [ |3 meo)| ar= 3k

and by the symmetry properties of the Rademacher variables,



80 V. D. MILMAN AND M. SHARIR Israel J. Math.

1-ey ety [| % x| s 3 1k
iEA” i€EA"
so that we have a similar inequality to (1), involving only the ‘“‘good” part of
{1’ Y n}'

Let us now introduce new symbols {B,};-, for the subsets {A,,};1s:sm Let us
define

w(0)= 2 xe(8), s=I 6€[0,1).

Then

SZ; lus(8)| = <p,(l)'”,§ E xisi(())s,(t)"'dt.

1 i€B;

Integrating with respect to 6, we obtain

2 [1u)

W= o || 3 o)
_ir(._l__ 2 Il

“(1-e)yTe(ny

=S (et

s=1 i€B,

Hence, there must exist at least one index 1= s,=1 such that

f | u,(8)|d6 = f ";ﬂ‘, x.-e,-(())“'d()

=

ey s,
=Ty, Il

By replacing the x;’s by the normalized £;’s and by making & small enough, we
have (observing that ¢, (1) = ¢.(n))

(I

But | B, | =k, and by our choice of the number r, we obtain

(J

(in the case gg = © we have formally the same inequality because | B, [ = k' =

r ir 1/r
S se@)d0) =2( 3 1) =2/B,"
i€B,

i€B,,

r r
> ;eie,-(e)“ d6> <4|B,|"=

i€B,
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2). Since the set B, is one of the sets A;, it is contained in some set A = A,

which consists of k elements that are ¢-invariant to spreading. By the choice of
B,,, we obtain, for each T CA,

|

Thus, to complete the proof of the assertion, it remains to show the existence of
T C A, which is large enough and forms a “good” unconditional basic sequence.

D )2,-3,»(0)"'(10)”'54]Tl”"E.

€T

To do so, we make use of the following lemma, due to Brunel and Sucheston [1]:

LEmMA 2.8. Let 8, & >0. For each n there exists N = N(n, 8, €) such that for
each N elements x,,-- -, xx in the unit ball of any Banach space, satisfying
[l x; — x;]| = & for each i # j, there exists a subsequence x, , x,,, " -, X;,, such that the
sequence v; =X, — X,_, ] =1,---,n, is an unconditional basic sequence with
constant =2+ ¢, and for each j = n, ||v;||= 8.

Let T, C A be a subset such that {£ }.cr, is contained in a ball of radius &. Since
all of these elements have norm = 1— §, it follows that there exists a functional
x* € E* such that ||x*||=1and |x*(£)| = 1— 38 for each i € T,. Then, from (2)
we obtain

(I

But it is well-known that for any scalars {«;}

r=2) (”2 aiei(e)"d())l-h; (2 P 42)

Hence, (1-38)| To[! = 4] T,|"*= and so

D x*(ﬁ.-)s,-(o)!'d())ur§<f

i€T,

4 Ur
D ;2,.&(6)“ do) < 4T, |1

€T,

172

=M.

) LA1/2)~ (174D

(s

To conclude, no more than a fixed number M of elements of {£;};ca can be

contained in a ball of radius 8. Hence, by a standard argument, there is a subset

T C A of at least k /M points such that forany i# j € T, || % — £;|| = 8. Hence, by

Lemma 2.8, if k is large enough, we can find a subsequence %, , - - -, X, such that

the sequence v; =%, — X, _,, j = 1,---,m is unconditional with a constant =3,
say, and |v;[|= & for all j = m. But from (2) we obtain, for each s = m,
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[$el=s (1S ol o)

3<f /_Zi;z,s,-(O)l"d"yr”(”

= 245",

lIA

s r r
2 ‘fiz,'—lel'(o) ” d0)
ji=1

Whence the assertion follows, by setting y, = v;/2, j = m, with 1— /2 instead of
8, and y =12.

(b) For type. The proof is quite similar to the previous one, with some
differences, on which we shall now comment. As above, we may assume that
pe <2, for otherwise there is nothing to prove. Instead of (iii) in the assertion,
we require that for all s=m

(i) |25y, l1z (1/y(s))s™
where y(s) = K (¢, (s))® for some constants K >0 and 8 = 0 that will be chosen
later in the proof. For any such choice, we have by Lemma 2.4

Hence, the application of Krivine’s theorem can be carried out in much the same
way as in the proof for cotype (except for pg = 1, in which case we choose p = ps
for all k, and since any Banach space is of type 1, C, = C, <, and the proof
becomes simpler).

In the proof of the assertion, we fix k >1 and choose pg <r <2 such that
k770 <2 and a = 3((r/pe) — 1), using ¢ instead of ¢, we obtain the following
derivation (which, up to formula (4), is rather similar to the derivation of (2)
above, but is given here to reflect some minor differences):

o )

w, A, X, A} and A, are defined precisely as before (but now we require that
A;: CA{? should satisfy

L2 z=ofe)” (]

| Ay [P -
for all TCA{). Now we construct, in a similar way as before, a partition of
{1,-+-,n}intoa “bad” part A’= U,; A;,and a “good” part A", its complement.
Again, the ““bad” part A’ can be ignored in (3), as follows:
By the triangle inequality,

3 xear) > =3 Ix

3 gt "'dt> "

T
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E xiei(t) N ’dt>m+ ; llx: .

iEA”

Z xe(t)" dt é

But

=

i - n n 2 AV
S xS e Ael s 7 =700 (S Il
€A’ i i=1

and, since r <2, one has, from Corollary 2.3, n® = o(¢.(n)). This, and the

(3i0e) "= (Z 000"

yield that if n is large enough, then by (3)

1z )"

{B,};-1 and {u,(6)};-, are defined precisely as above, and, for each 6 € [0, 1],

obvious inequality

. (t)” dt 'S =26 (n)< S Ix

iEA"

f” xgl(f’)es(t)” dt= (1) Z lu, ()|

and by integrating with respect to #,

p
sE;jllus(o) 'do >§1_—i€(%ﬂ§ (é x| )

Hence, there must exist at least one index 1= s,=1 such that

[1ugoras > AL 5

re ()] 0= u0r [

u.(0)|'de

i€EA”

and therefore

40

and, as before, one can obtain

(J

Again, by the choice of r and B,=A,,,,, we obtain, for each TCA=A),

0

D fiei(o)”rd9>m>5|3%1‘/2

i€B,

D f.-s;(())“'d0>w>%lTl""E.

ie€T



84 V. D. MILMAN AND M. SHARIR Israel J. Math.

As in the proof for cotype, we want now to make use of Lemma 2.8 in order to
obtain an unconditional basic sequence that satisfies our assertion. However,
here we face extra difficulties due to the direction of the inequality (4), which
prevents us from applying the triangle inequality in a simple manner, as we did in
the case of cotype.

We proceed as follows: First, we claim that there exists § >0 such that for
each integer | we can find k large enough so that the set {£,};-, which satisfies (4)
contains a subset {u;};.; such that

(5) lu—ulzs 1=i£j=2l

Indeed, fix m such that im "= >1+ m? and let § = 1/m. Take k >2Im. It is
sufficient to show that no ball of radius § can contain m points of the sequence
{%:}i-, satisfying (4). Thus let x, be a center of such a ball which contains, say,
X1, &me By (4) we get

%m”"e<<f Zfiei(o)“'dey
(

/

m
E "f: - x()” + m%
i=1

1A

> (- xo)s.-(e)”'dg)”'+ ([

1A

fIA

1+m

contradicting the choice of m.

Thus, there exists & > 0 such that for each integer [ we can find a sequence of
almost norm 1 elements {u; };+, C E which is ¢ -invariant to spreading, satisfies (5)
and

o

By Lemma 2.8 we may also assume that the sequence {y; = uz_, — U}, is an
unconditional basic sequence with an unconditional constant = 3, is ¢-invariant
to spreading, and & =|y;[|=2 for all j =L Thus {3y,};-, satisfies conditions (i)
and (ii) of the assertion, and the following lemma asserts that a subsequence of
this sequence satisfies condition (iii’),

r t/r
> u:&-(())” dO) >4 T,  forall TC{l1,---,21}.

ieT

LeMMA 2.9. There exist constants K, Ko >0, 8 = 0, such that for each integer
m, if we take
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5 m (| (Kot Gpeeres0 | 41)

and construct a sequence {y;};-, as above, then {}y,;}/., satisfies condition (iii’} of
the assertion, i.e.

s 'Pe s=1,---,m

” 2 (s) ’

where y(s) = K(¢,.(s))".

Proor. Let C >0 be a constant independent of r such that the L*=(E) and
L'(E) norms are C-equivalent on the span of elements of the form x - £(8),
x € E. (C can be chosen to be independent of r since r belongs to the bounded
interval [pg, 2].) Put Ko = 9C. Suppose that there exists s =m such that

g |2 5]<56

Let
£ = (Kot (£))7=72).

By the choice of | we have s(t + 1) = [, so that we can construct the following
t X s matrix U = (Uy) from the set {y;}7%,

Uy — U Uri2 ™ Upss t Ueys-+1 T Ugriys-ne2
Ui— Us Uiz ™ Usra

Ui~ Upey U2 ™ U2+ 0 Ue+rys-+a1 — Use+n -

Let {a;;(0)}is.,;=s be an enumeration of independent Rademacher functions, and
define

s

X(8)= S 2, «i(0)Uj.

i=1 j=1

Then we have

(fllX 0) 'd0 52 ”’Z o (6) U“ de

But by the ¢-invariance to spreading and the unconditionality of the u;’s, we
have for each 6

s

> aij(O)Uijl‘§(1+5)

ji=1

s

I_Z ;i () (uzi—1 — uy;)




86 V. D. MILMAN AND M. SHARIR Israel J. Math.

=(1+¢g)

IZ a;(0)y; H

5]
j=1
<6!1+ € !s”"E

y(s)

()38

On the other hand, by the triangle inequality,

([ix@ras) = (]2 3 ueere e (0)] d6)”

i=1 j=1

=3(1+¢)

by (7). Hence

(i

i=1 j=1

= Ilhlz-

But I, can be written as ([ {|Zicrue:(0)[[d6)"”, where T =1{2,3,---, 1 +1, t+3,
20t +1), 2(t+1)+2, -+, s(t +1)}. Hence, by (6),

‘Il’gil Tll/pE - %t”ps . sl/pE.

As for the second integral, we have

1tr
”’2 au(e) U+nG-1+1 dB) .

Define h;(0) = Zi.,a;(8), j = 1,- - -, s. These functions are symmetric and inde-
pendent, and therefore, by the symmetric properties of the Rademacher

functions, we have

(]I

Integrating first with respect to ¢ and using the definition of . (s), we obtain

r 1714
d6d§> .

L2 Coun(s) (3 [In@)ras)

=C (3 ([ In@ras) ™)™

=C- 8- Wy (5) - 5P,



Vol. 33, 1979 THE MAUREY — PISIER THEOREM

Combining all inequalities together, we finally obtain

61+8 t 1/ /) 1/, 1
—(-ml-s Pe > 1yWPs . g "E—-Cﬂl!lpE(s)'SUpE

or, by the choice of ¢,

6(L+ €)1 upoy
%L>Zt 'Pe7z — C"/’pa(s)-z— C"l’PE(s)'

Hence,

6(1+ £) 00Uy, ()=
C : llpr (s)

y(s)<

= 54(1+ £) - (9C)P="0Pe) . (4, (5))Cr"0=PeD,

87

Thus, if we choose B =(pe —1)/(1-pe/2)=0, K =541+ £)(9C)?, we will
obtain a contradiction to the definition of y(s). This proves the lemma, and the

proof of the theorem is thus completed.
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