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A NEW PROOF OF THE 
MAUREY-PISIER THEOREM 

BY 

V. D. MILMAN AND M. SHARIR 

ABSTRACT 

In this paper we give a new proof of the Maurey-Pisier theorem about the finite 
representation of l~E and l~e in any infinite dimensional Banach space E. 

I. Introduction 

The key theorem in the now fastly growing theory of type and cotype of 

Banach spaces is the theorem of Maurey and Pisier [4], stating that if pE is the 

supremum of all types of an infinite dimensional Banach space E, and q~ is the 

infinum of all cotypes, then lpE and l~E are both finitely representable in E. This 

result establishes a link between probabilistic properties and geometric proper- 

ties of Banach spaces, and plays an important role in the modern study of the 

geometry of Banach spaces. 

However, the original proof of the theorem given in [4] is rather complicated. 

We shall present in this paper a shorter, and, to our belief, more natural proof of 

this theorem. 

We assume that the reader is familiar with the basic theory of type and cotype. 

The relevant notations will be introduced in the next section, but let us first 

review briefly our proof. 

We start as do Maurey and Pisier in their proof [4] with a finite sequence in E, 

almost attaining equality in the inequality in the definition of type (or cotype). 

This sequence is manipulated, using some lemmas taken from [4] (lemmas 

2.1-2.3 in our paper), but then applying a new geometry-oriented argument, to 

obtain from it a new sequence which "behaves" better, in the sense that it 

satisfies formula (2) (resp. (4)) below in the case of cotype (resp. type). Further 
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manipulation of this sequence, using the combinatorial theorems of Brunel and 

Sucheston [1] about unconditional and spreading-invariant subsequences in 

Banach spaces, and then the deep theorem of Krivine [3] about finite representa- 

tion of lp spaces in Banach spaces, completes the proof by producing yet another 

sequence spanning a finite lp subspace of E as desired. This final construction is 

relatively simple in the case of cotype, but presents some technical difficulties in 

the case of type, as the required inequalities all go in the "wrong" direction. 

These difficulties are resolved in the final lemma 2.9. 

The ideas in this proof have already been used by the authors in [5] to prove a 

similar theorem for somewhat different notions of type and cotype. 

2. Proof of the Maurey-Pis ier  theorem 

Let us first introduce several definitions related to the notions of type and 

cotype. 

Recall that a Banach space E is said to be of type 1 =< p -< 2 (resp. of cotype 

q_->2) if there exists a constant C > 0  

x,, �9 �9 x. E E, we have 

(f x ,t, 

such that for each finite sequence 

--< Xi p 

( (f (resp. ~ IIx, II") <= c ~ x,e,(t) ~dt ) 
i = l  i = l  

where e,(t) are the Rademacher variables. The smallest such C is denoted by Cp 
(resp. Cq) and is called the p-type (resp. q-cotype) constant of E. By a result of 

Kahane [2], all LP(E)-norms are equivalent on the linear span of elements of the 

form ej(t)xj, j >= 1, xj ~ E, and so, up to changing the constant C, we may replace 

the exponent in the integrals by any other exponent in [1,oo). 

Let 

pE = sup{p : E is of type p}, 

q~ = inf{q : E  is ofcotype q}. 

(E need not be of type pE nor of cotype q~.) 

Let the infinite dimensional Banach space E be given and fixed (unless 

otherwise stated) henceforth. For each 1 =< p _-< 2 and each integer n, let qsp (n) be 

the smallest positive constant 4s such that, for every n elements x~, �9 �9 x, of E, 
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~ x~e,(t) dt =t~ ~ IIx, IIP) . 
i = 1  i = 1  

Similarly, for each 2 =< q and each integer n, we define ~q(n) as the smallest 
positive constant r such that, for every n elements x , , - . . , x ,  of E, 

IIx, II x,e,(t) at 
i = l  

(see [4]). Evidently, the sequences {G(n)},__-, {~0q(n)},~, are increasing. 

The following preliminary lemmas (2.1-2.3) are taken from Maurey and Pisier 

[4], and are cited here for the sake of completeness. (The first lemma is by now 

well-known and is used extensively in Banach-space theory.) 

> LEMMA 2.1. For each l=<p-<2 and q = 2 ,  the sequences {r and 

{G(n)},~, are sub-multiplicative, i.e. for all integers n, k we have 

(a) 

(b) 

LEMMA 2.2. 

~q(nk ) <-_ ~q(n)~vq(k ), 

~bp(nk ) <= ~bp(n)~bp(k ). 

(a) If N > 1 is an integer, and q >-_ r >- 2 is defined by ~,(N)  = 

N ~'-~/q, then E is of cotype s, for each s > q. 

(b) If N > 1 and p <-- r <-<_ 2 is defined by ~,(N)  = N '/p-~/', then E is of type s, for 

each s < p. 

COROLLARY 2.3. 

LEMMA 2.4. 

For each integer n, p~ <= p <- 2 <- q <- qu, 

~q(n ) >= n "/q~-"/qE~, 

G ( n  ) >= n 

(a) If q <= q~, then 

lim log ~Pq(n) = 1 _  1 
, ~  logn q qE" 

(b) If p >= pE, then 

PROOF. 

lim log G ( n ) _  1 1 
, -~ logn pE p" 

We shall prove (a) only. It follows from the last corollary that 

lim log r >= 1 _ 1 

log n q q~ 
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On the o ther  hand, let e > 0, r > qE, and let n be an integer. By the definition of 

q~q(n) there exist y~, . . . ,  y, such that 

Iq ~,/q 

n ) lit ~ ( fl ,, 

<- C,n (i/q~-,m yiei (t t 
I 

(fll  o ),q <- C~')n ('/q~-~'/'~ y,e~(t) dt 
I 

(since E is of cotype r and by Kahane ' s  theorem [2] ment ioned  above). Hence,  

1 (1) (l/q)-(1/r) 
~q(n)  <-_ 1 - ~ C ,  n 

and therefore  

- -  log q~q(n) 1 1 
lira =< - - - 
, - ~  log n q r 

and since r > qE was arbitrary, we have proved the s ta tement  (a). The  proof  of 

(b) is precisely the same. 

Let us now recall the impor tant  theorems of Brunel  and Sucheston,  and of 

Krivine, upon which our  proof  is based. 

DEFINITION. Let e > 0 .  A sequence {y~},~k in E is called e- invariant  to 

spreading,  if for all s - < k ,  1_-< i1< i2 . . .  <i~_<-k, l _ - < j ~ < j 2 . . .  ( j~- -<k ,  and 

a~, �9 �9 a, scalars of modulus  -< 1, we have 

We  shall need the following version of the theorem of Brunel  and Sucheston 

(cf. [11): 

THEOREM 2.5. Let  e > 0 and k be an integer. Then there exists N = N ( k ,  e )  

such that for every n >-_ N and every sequence yx," " ' ,  y,, in the unit ball o f  any 
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Banach space, there exists a subsequence yj~,...,y,~ which is e-invariant to 

spreading. 

The main deep result on which our proof is based, is the theorem of Krivine 

[3], in the following finite-dimensional version. 

THEOREM 2.6. Let ~n~ J, 0 and let {Bn}.~-x be a sequence of finite-dimensional 

Banach spaces, such that, for each n, Bn is spanned by a sequence yT,'" ", y2 of 

norm-1 elements, which is ~n-invariant to spreading, and unconditional with 
constant <= C, where C does not depend on n. If, for every sequence n >- t, ---, oo of 
integers, 

p=inf{r:Ji~m~t~'~l~,=l YTI =O0} 
then lp is block-finitely representable in {B,}.~t; i.e., for each e > 0 and each k, 

there exists n, and k blocks of {y 7,'" ", y ~} which are (1 + e)-equivalent to the 

standard basis of l~ k~. 

Now we proceed to prove the Maurey-Pisier theorem. 

THEOREM 2.7. (Maurey and Pisier) For each infinite-dimensional Banach 

space E, lp~ and lq~ are both finitely representable in E. 

PROOF. (a) For cotype. Assume that 2 <  qe =<oo. (If qE = 2, then there is 

nothing to prove, for, by Dvoretzky's  theorem, 12 is always finitely-representable 

in E. The case q~ = o0 is simpler, but we prefer to treat it in our general scheme.) 

It suffices to prove the following assertion: 

ASSERTION. There exists 0 <,5 < 1 such that for each e > 0  there exists a 

constant 3' > 0 such that for each integer m there exist m elements yl, �9 �9 -, ym of 

E such that 

(i) 1-~<lly~ll_-<l, i = l , . . . , m ;  
(ii) (y , , . .  ",ym) is an unconditional basic sequence with constant _-< C (C 

does not depend on m) and is e-invariant to spreading; 

(iii) [[X;~, yj [[ _= 3' .s  l/qE, for all s _-< m. 

Indeed, suppose that the assertion is true. In the case q~ = oo the inequality (iii) 

implies [[E? aj .  y, II--- 3' maxl,~,~la~l and therefore span{y,}j~l is (C .  3')- 
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isomorphic to l~. If q~ < ~, then we are in a position to apply Krivine's theorem. 

For each k, let y~ , . . . ,  y~ be k elements of E satisfying the assertion with 

ek = 1/k,  say. Define z ~ =  y~/lly~'f[, J = 1 , . . . , k .  Then, for any q >qE, we shall 

have, for every s -< k, 

/f II / 1" <= G z~es( t )  qdt 
j= l  

_-<Cq. I--~=~zJ = l _ 6 C q  �9 . 

Thus, for any r, and each s < k, 

S (I/q)-(1/r) S-I /ri tZ ~ ~-~l~S(I/qE)-(l/r). ~ < =  
C . C ~  j=~ 

Now, for every s e q u e n c e  of in tegers  k >-_ sk --> o% it follows that if r < qu then 

l ims~ ~/" ~ z~ = 0  

and if r > qe, choosing q so that r > q > qe will yield 

l ims~' / '  j--~l z~ = oo. 

Hence,  lq~ is indeed finitely representable in E, by Theorem 2.6. 

PROOF OF THE ASSERTION. First assume qE < oo. Let k be given, and let us fix 

2_-<r<q~, so that k"/'-Cl/q~)-<2. Put a = � 8 9  and choose n large 

enough, so that n ~ >-_ N ( k ,  e) ,  as in Theorem 2.5. In the case qE -- oo we choose r 

so large that k~/'_- < 2 and take a = 1/2. Then, by the definition of ~,(n),  there 

exist x l , ' " , x ,  E E such that 

(fl )" 
With no loss of generality, assume that max, IIx, tt = 1. Let 0 < 6 < 1 and put 

w = 1 -  6. Define, for each j_-> 1 and i -> 1, 

As = {i : w s < Ilx, II--< w'-l}, 

:~i = x i /w  j-l,  for i E Aj. 
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If [Aj [ =< n ~, we set Aj,o = A; and do nothing else with this set. If [A; [ > n ~, then, 
A (~) ' -  " by Theorem 2.5 and the choice of n, there exists a subset ._;,1 ~Aj  of k elements 

which are e-invariant to spreading. We choose a subset A;,~ C A)~? for which 

(f ~ , ' , ( "  "dt)'/�9 

is maximal. If I A ; -  A;,,I > n ~ then there exist two other subsets A;.,CA~JJC 
A ; -  A;,~ with the same properties. Continuing in this manner we obtain a 

disjoint partition 

A; = Aj.~ U �9 �9 �9 LI Ai.m; U Aj.o, 

where [ A;.ol =< n ~, and for each 1 =<p = < m;, Ajp. C A ~ where ..A i.p9~ consists of k 

elements which are e-invariants to spreading, and for each T ~-Ag~ 

( f tf fr I ( r ll II I s dt ~ s dt 

We now split {1, . . . ,  n} into two parts. The "bad"  part is A ' =  UjA;.o and the 

"good" part, its complement, is A " =  I,J; U~_,~m~Aj.,. Let us show first that the 

"bad"  part can be essentially ignored in inequality (1). Indeed, 

IIx, I1' -- E IIx, I1' + E Hx, II r 
i = 1  l E A '  i ~ A "  

<= • w~ + E Itx, ll' 
j i E A "  

n '~ 

= l _ w , +  • Ilx, l['. 
i ~ A "  

But a is so chosen that, by the property of q~,(n) in Corollary 2.3, n " =  
�9 ~ n r o (~o,(n)), and since 1 = f It E,=l x,e, (t)ll at (because max tt x, II = 1, and the sym- 

metry properties of the Rademacher variables), we may assume that 

1 - w' < e(1 - e)'~o,(n)'. ,=, x,e,(t) 

Thus, it follows from (1) that 

(1-e)'+l~o,(n)'f ,=~ x,e,(t) "dt -< E fix, H' 
i E A "  

and by the symmetry properties of the Rademacher variables, 
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so that we have a similar inequality to (1), involving only the "good" part of 

{ 1 , . . . , n } .  
Let us now introduce new symbols {B~}t,=~ for the subsets {Aj.,}j.~,~,,j. Let us 

define 

Then 

us(0) = ~ x,e,(O), s<=l, 0 ~ I 0 , 1 l .  
i E B  s 

fll~__l [[ "dt" Ilus(O)l[" <= q~,(l)" • x,e,(O)es(t) 
S = I  i ~ B  s 

Integrating with respect to 0, we obtain 

f ;[r P[ '0 Ilus(o)H'dO <-<_ q~,(l)" • x,e,(o) 
s = l  l E A "  

~,(l)' E IIx, If' --< ( 1 -  ~) '+'~,(n) '  ,~,,. 

= q~,(l)' ~ ( , ~  ffx, 11') 
(1 -  e)'+'q~,(n) ' = 

Hence, there must exist at least one index 1 =< So_-< l such that 

y '.0 
i ~ B s  o 

< ~, ( t )"  
= (1 - e)'+'q~,(n) ' Z II x, I['. i EBso 

By replacing the x~'s by the normalized ~ ' s  and by making e small enough, we 

have (observing that q~,(l) =< q~,(n)) 

( f  ' " ' / '  " ),/, iEBSO i 0 

But IB~ol--< k, and by our choice of the number r, we obtain 

i,e, (0) dO =< 41B~o[ ',% 
i ~ B s  0 

(in the case qE = ~ we have formally the same inequality because [B~,I '/" <- k '/" <= 
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A (1) 2). Since the set B~ is one of the sets Aj., it is conta ined  in some  set A ---..to.,o 

which consists of k e lements  that  are e - invar ian t  to spreading.  By the choice  of 

B~, we obtain,  for  each T C A ,  

(2) ,~_ ~?,e,(0) dO) -_<4IT . 

Thus,  to comple te  the p roof  of the assert ion,  it r emains  to show the exis tence of 

T C A, which is large enough and forms a " g o o d "  uncondi t ional  basic sequence.  

To  do so, we m a k e  use of the following lemma,  due to Brunel  and Sucheston [1]: 

LEMMA 2.8. Let 8, e > O. For each n there exists N = N ( n, 8, e)  such that for 

each N elements x l , "  ",xN in the unit ball of any Banach space, satisfying 

ll x, - xr [[ >-_ 8 for each i / j, there exists a subsequence x,~ , x,~,- . . ,  x~  such that the 

sequence v i - x ~ j -  x~:~ ,, j = 1 , . . . ,  n, is an unconditional basic sequence with 

constant <-_ 2 + e, and for each j <= n, II vj 11 >= 8. 

Let T o C A  be a subset  such that  {x~}~ro is conta ined  in a ball of radius 6. Since 

all of these e lements  have  no rm => 1 - & it follows that  there  exists a functional  

x * E E *  such that  II x* 11 -- 1 and Ix *(i ,) l  => 1 - 38 for  each i E To. Then,  f rom (2) 

we obta in  

(fl f, (f ,),,, ~,  x*(2,)e,(O) dO <-_ ~ 2,e,(O) dO <41ToJ'/%. 
i ~ T  o l E T  o 

But it is wel l -known that  for any scalars {a~} 

(ftzo,,(o, ,,)": 
Hence ,  (1 - 38)/1"ol �89 41 ToY % and so 

[ 4 ~mo/2)-o/%), 
I Tol =< - M .  

To conclude, no more than a fixed number M of elements of {2~}~A can be 

contained in a ball of radius 8. Hence, by a standard argument, there is a subset 

T C A of at least k / M  points  such that  for  any i / j ~ T, II 2, - 2~ II --> 8. Hence ,  by 

L e m m a  2.8, if k is large enough,  we can find a subsequence  $~,,. �9 x~2m such that  

the sequence  vj ~ ~,2j - 2,2,_ ,, j = 1, �9 �9 m is uncondi t ional  with a constant  _-< 3, 

say, and II vj II => 8 for  all j -< m. But  f rom (2) we obtain,  for  each s =< m, 
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(3 I1' )'" ')'" =<3 ~ ~,2,e,(0) dO + 3~J ~ ~,,_le,(0) dO 
j=l  j=l  

=< 24s i/%. 

Whence the assertion follows, by setting y, = vfl2, j <- m, with 1 - ~/2 instead of 

c5, and 3; = 12. 

(b) For type. The proof is quite similar to the previous one, with some 

differences, on which we shall now comment. As above, we may assume that 

pe < 2, for otherwise there is nothing to prove. Instead of (iii) in the assertion, 

we require that for all s _-< m 

(iii') liE;=, y, II >-- (1/y(s)) s'/pE 
where y(s)  = K(tppE(s)) ~ for some constants K > 0 and/3 ~ 0 that will be chosen 

later in the proof. For any such choice, we have by Lemma 2.4 

lim log y(s)  = 0. 
�9 ~ log s 

Hence, the application of Krivine's theorem can be carried out in much the same 

way as in the proof for cotype (except for PE = 1, in which case we choose p = pE 

for all k, and since any Banach space is of type 1, Co = C1 < oo, and the proof 

becomes simpler). 

In the proof of the assertion, we fix k > 1 and choose pe < r < 2 such that 

k (1/~)-,/,) < 2, and a = �89 - 1), using 0 instead of ~0, we obtain the following 

derivation (which, up to formula (4), is rather similar to the derivation of (2) 

above, but is given here to reflect some minor differences): 

(3) (f l "d t ) ' / '>(1-e) tb , (n) (~  ,[x;,,')'"; 

w, Aj, ~,, AJ.~, ) and A;., are defined precisely as before (but now we require that 

Aj, ,-~(') , ~ . l j , ,  should satisfy 

(I ''r (I (t) "dr)';" 
< 

r A,,, I ''% = I V l 

for all T CAin, ). Now we construct, in a similar way as before, a partition of 

{1,. �9 n} into a "bad"  part A '  = UjAj.o and a "good"  part A", its complement. 

Again, the "bad"  part A '  can be ignored in (3), as follows: 

By the triangle inequality, 
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/fr *'" if j t 2 x,e,(t) dt) <= ~, x,e,(t) dt + ~ IIx, ff. 
i = l  i E m "  i ~ m '  

B u t  

IIx, ll--<Y~ w ~ " l a ,  o/< n ~ _< Ilx, ll, 
l e A '  ] ' = 1-- W -- 1-- W i=~ 

and, since r < 2 ,  one has, from Corollary 2.3, n ~  o(tO,(n)). This, and the 
obvious inequality 

,~,,') ~ x ,x, , ,)  , 
l E A "  

yield that if n is large enough, then by (3) 

( f  [I,~a" x ,e , ( t ) 'd t ) ' / '> (1-2e)tk.(n)(,ZXa. 'IX, H') 1''. 

n 1 { ~},=, and {u,(O)}t,=, are defined precisely as above, and, for each 0 E [0, 1], 

fll  FI ~. x,e,(O)e~(t) dt<=tl,.(l)'~. [[u,(O)[[" 
s = l  i E .  s s = l  

and by integrating with respect to 0, 

fll  ,IP* x,e,(O dO <-_ ~g(l ' Ilu,(O)ll'dO 
i lEA" s = l  

and therefore 

�9 =,2 fllus(O),,'dO> (1 - 2e)'~O'(n)' 2 0 , ( 1 ) ,  S=I (i~s Ilxl lit ) " 

Hence. there must exist at least one index 1-< So <= l such that 

f ll u~(o)l(ao 

and. as before, one can obtain 

> (1-2e) 'qJ , (n) '  E IIx, ll ' 
r ,~-,o 

Z z~,(o)  dO >2 ~ . 
i E B s  0 

Again, by the choice of r and B~ =-Aj . . . . .  we obtain, for each T C A = A o) Jo, lo 

(fIP  ,,o,ll 
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As in the proof for cotype, we want now to make use of Lemma 2.8 in order to 

obtain an unconditional basic sequence that satisfies our assertion. However, 

here we face extra difficulties due to the direction of the inequality (4), which 

prevents us from applying the triangle inequality in a simple manner, as we did in 

the case of cotype. 

We proceed as follows: First, we claim that there exists 6 > 0 such that for 

each integer l we can find k large enough so that the set {~}~=~ which satisfies (4) 

contains a subset {u~}~t_-i such that 

(5) I[u, - uj II_-> ~5, l<=i~j<=2l. 

Indeed, fix m such that �88 '/"~ > l + m ~  and let 8 = 1/m. Take k >21m. It is 

sufficient to show that no ball of radius 3 can contain m points of the sequence 

{$~}~'=~ satisfying (4). Thus let x0 be a center of such a ball which contains, say, 

G , ' "  ", ~,,. By (4) we get 

�88 '/pE < ~,e,(0) dO) 
i = l  

(f ) '  (; ,0, ) '  < (i, - Xo)S,(O) dO + x,,s, dO 
i = l  i = l  

m 

=<E Ilx, - x,,ll + m~ 
i = l  

- < l + m ~  

contradicting the choice of m. 

Thus, there exists 8 > 0 such that for each integer l we can find a sequence of 

almost norm 1 elements {u~}~l C E which is e-invariant to spreading, satisfies (5) 

and 

(f t "  (6) ~ dO >I]  TI '/pE, for all T C{1, . . . ,  21}. 
l E T  

By Lemma 2.8 we may also assume that the sequence {yi = u2j- i-  u2j}l=l is an 

unconditional basic sequence with an unconditional constant =< 3, is e-invariant 

to spreading, and 6 _-< I[YJ II ~ 2 for all j _---I. Thus {�89 satisfies conditions (i) 

and (ii) of the assertion, and the following lemma asserts that a subsequence of 

this sequence satisfies condition (iii'). 

LEMMA 2.9. There exist constants K, Ko > O, [3 >= 0, such that for each integer 
m, if we take 
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l > m([  (Kog,~(m ))2Pd(2-P~) ] + 1) 

and construct a sequence {y,}~=~ as above, then {�89 satisfies condition ( i i i ' )of  

the assertion, i.e. 

II s I 1 �89 >=-~'s ' /% s = 1, . . . ,m 

where y(s)= K($e~(s)) ~. 

PROOF. Let  C > 0  be a constant independent of r such that the LP~(E) and 

L'(E) norms are C-equivalent on the span of elements of the form x �9 e~(0), 

x E E. (C can be chosen to be independent of r since r belongs to the bounded 

interval [pE, 2].) Put Ko = 9C. Suppose that there exists s =< m such that 

7 ~  s �9 

Let 
t = [(KoSp~ (s))2pd(2-P~']. 

By the choice of l we have s(t + 1)=  < l, so that we can construct the following 
21 t x s matrix U = (Uij) f rom the set {uj}j=l: 

U l -  U 2  U t + 2 - -  Ut+3 " " " /-~ ( t + l ) ( s - l ) + l -  U ( t + l ) ( s - 1 ) + 2  

U l -  U 3  U z + 2 -  /Xt+4 " " " 

�9 . . 

~- '~1- U t + l  U t + 2 - -  U 2 ( / + I )  " " " U(t+l)(s--l)+l- U s ( t + l ) ,  

Let {aij(0)}~__<,.j__<, be an enumerat ion of independent Rademacher  functions, and 

define 

Then we have 

x • o,,(olu,,. 
i = i  j = I  

l / r  t r '~ l l r  

(f (f I . 
But by the e-invariance to spreading and the unconditionality of the u,'s, we 

have for each 0 

2 O~ij(o)gi j ~ ( 1  + e )  j = l  OLij(O)(U2j--I- u2j 
j = l  



86 v . D .  M I L M A N  A N D  M. S H A R I R  Is rae l  J. Math .  

by (7). Hence 

z r j= l  

j= l  

< 6 ( 1 +  e) s,/~ 
v(s) 

c ' ';" )t. jtiX(O)jl~dO) < 6 ( 1 +  e s,t,~ 
v(s) 

On the other hand, by the triangle inequality, 

(f (fl  I' )'" IIx(o)tt'ao) >= E u,,+,,o,,+,+,~,;(0) ao 
j= l  

(fll ~ x II' )'" - uo+x)o-1)+,a,;(O) dO 
i= l  j= l  

= 11- lz. 

But L can be written as (fllX,~TU,r,(O)ll'dO) ~', where T = {2,3,---, t +  1, t +  3, 

�9 -., 2 ( t+  1), 2( t+  1)+2,  . . . ,  s( t+ 1)}. Hence, by (6), 

II, I>=~ITI'/pE =~t'/,E .SI/PE 

As for the second integral, we have 

,~= (f ,.~ (~ ~,J(~ ,,+,ll'a~ 
Define h;(O) = El=~ a,;(O), j = 1,. �9 s. These functions are symmetric and inde- 

pendent, and therefore, by the symmetric properties of the Rademacher 

functions, we have 

i2= ( f f ,=E h;(O)ej(~)uo+,o-,+l "dOd~) '/" 
Integrating first with respect to s c and using the definition of qJp~ (s), we obtain 

<= C.~,~As) f h;(O)l~dO 

= C" t x~" ~Op~(s)" s '/pE. 
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Combining all inequalities together, we finally obtain 

6(1 + e ) t .  i/.~ 1 1/pE s I/pE 1/Plz y ( s )  s > z t  �9 - Ct�89 s 

or, by the choice of t, 

6(1+ e)t "~ �88189 v(s) > - c . >= c4  E(s). 

Hence, 

y(s)  < 6(1 + e ) ( 9 C 6 e v , ( s ) )  p"'2-"~ 
c .   0p.(s) 

= 54(1 + e ) - ( 9C )  ~176 �9 (~OpE (s)) ~E-w~ 

Thus, if we choose /3 = (pz - 1) / (1-  pE/2)_-> 0, K = 54(1 + e) (9C)  ~, we will 

obtain a contradiction to the definition of y(s).  This proves the lemma, and the 
proof of the theorem is thus completed. Q.E.D. 
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